skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hua, Junlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution. 
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Abstract Accurate precipitation monitoring is crucial for understanding climate change and rainfall-driven hazards at a local scale. However, the current suite of monitoring approaches, including weather radar and rain gauges, have different insufficiencies such as low spatial and temporal resolution and difficulty in accurately detecting potentially destructive precipitation events such as hailstorms. In this study, we develop an array-based method to monitor rainfall with seismic nodal stations, offering both high spatial and temporal resolution. We analyze seismic records from 1825 densely spaced, high-frequency seismometers in Oklahoma, and identify signals from nine precipitation events that occurred during the one-month station deployment in 2016. After removing anthropogenic noise and Earth structure response, the obtained precipitation spatial pattern mimics the one from a nearby operational weather radar, while offering higher spatial (~ 300 m) and temporal (< 10 s) resolution. We further show the potential of this approach to monitor hail with joint analysis of seismic intensity and independent precipitation rate measurements, and advocate for coordinated seismological-meteorological field campaign design. 
    more » « less
  4. The asthenosphere plays a fundamental role in present-day plate tectonics as its low viscosity controls how convection in the mantle below it is expressed at the Earth’s surface above. The origin of the asthenosphere, including the role of partial melting in reducing its viscosity and facilitating deformation, remains unclear. Here we analysed receiver-function data from globally distributed seismic stations to image the lower reaches of the asthenospheric low-seismic-velocity zone. We present globally widespread evidence for a positive seismic-velocity gradient at depths of ~150 km, which represents the base of a particularly low-velocity zone within the asthenosphere. This boundary is most commonly detected in regions with elevated upper-mantle temperatures and is best modelled as the base of a partially molten layer. The presence of the boundary showed no correlation with radial seismic anisotropy, which represents accumulated mantle strain, indicating that the inferred partial melt has no substantial effect on the large-scale viscosity of the asthenosphere. These results imply the presence of a globally extensive, partially molten zone embedded within the asthenosphere, but that low asthenospheric viscosity is controlled primarily by gradual pressure and temperature variations with depth. 
    more » « less
  5. Constraining the volatile content of magmas is critical to our understanding of eruptive processes and their deep Earth cycling essential to planetary habitability [R. Dasgupta, M. M. Hirschmann, Earth Planet. Sci. Lett. 298 , 1 (2010)]. Yet, much of the work thus far on magmatic volatiles has been dedicated to understanding their cycling through subduction zones. Further, studies of intraplate mafic volcanism have disproportionately focused on Hawaii [P. E. Wieser et al., Geochem. Geophys. Geosyst. 22 , e2020GC009364 (2021)], making assessments of the overall role of intraplate volcanoes in the global volatile cycles a challenge. Additionally, while mafic volcanoes are the most common landform on Earth and the Solar System [C. A. Wood, J. Volcanol. Geotherm. Res. 7 , 387–413 (1980)], they tend to be overlooked in favor of silicic volcanoes when it comes to their potential for explosivity. Here, we report primitive (olivine-hosted, with host Magnesium number – Mg# 78 to 88%) melt inclusion (MI) data from Fogo volcano, Cabo Verde, that suggest that oceanic intraplate silica-undersaturated explosive eruptions sample volatile-rich sources. Primitive MI (melt Mg# 70 to 71%) data suggest that these melts are oxidized (NiNiO to NiNiO+1) and very high in volatiles (up to 2 wt% CO 2 , 2.8 wt% H 2 O, 6,000 ppm S, 1,900 ppm F, and 1,100 ppm Cl) making Fogo a global endmember. Storage depths calculated from these high volatile contents also imply that magma storage at Fogo occurs at mantle depths (~20 to 30 km) and that these eruptions are fed from the mantle. Our results suggest that oceanic intraplate mafic eruptions are sustained from the mantle by high volatile concentrations inherited from their source and that deep CO 2 exsolution (here up to ~800 MPa) drives their ascent and explosivity. 
    more » « less